An AUV for Ocean Exploring and its Motion Control System Architecture

نویسندگان

  • Lei Zhang
  • Da-peng Jiang
  • Jin-xin Zhao
  • Shan Ma
چکیده

With the development of exploring and utilizing ocean source, Autonomous Underwater Vehicle (AUV) which could finish autonomous mission process is paid more and more attention. As an artificial intelligence system, AUV has high independence, reliability and adaptability to ocean environment. An efficient architecture of AUV plays an important role in achieving those properties. A newly developed AUV, “ZT-AUV”, which is used for ocean exploring, is introduced. And its motion control system architecture is described. The architecture is divided into four parts including blackboard system, elementary behavior agent group, reflection behavior agent group and execution agent. The blackboard system is not only information processing and management center, but also agents’ behavior control center. As the executable unit of motion controller, elementary behavior agent group makes AUV achieve three kinds of motion including surge, yaw and heave by certain control algorithm. Reflection behavior agent group is the unit by which the behavior of AUV can be achieved in another way, and it works when the system has fault. Execution agent finally drives the actuators of the system. The structures of the four parts mentioned above are discussed respectively. Both the hardware and software are described. Finally, simulation experiments and real experiments are conducted to test the whole system, and the results prove that the system architecture is reliable, flexible and extensible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Motion Control Strategy for AUV

Autonomous Underwater Vehicles (AUV) speed and position control systems are subjected to an increased focus with respect to performance and safety due to their increased number of commercial and military application as well as research challenges in past decades, including underwater resources exploration, oceanographic mapping, undersea wreckage salvage, cable laying, geographical survey, coas...

متن کامل

OPTIMIZED FUZZY CONTROL DESIGN OF AN AUTONOMOUS UNDERWATER VEHICLE

In this study, the roll, yaw and depth fuzzy control of an Au- tonomous Underwater Vehicle (AUV) are addressed. Yaw and roll angles are regulated only using their errors and rates, but due to the complexity of depth dynamic channel, additional pitch rate quantity is used to improve the depth loop performance. The discussed AUV has four aps at the rear of the vehicle as actuators. Two rule bases...

متن کامل

Adaptive Robust Control for Trajectory Tracking of Autonomous underwater Vehicles on Horizontal Plane

This manuscript addresses trajectory tracking problem of autonomous underwater vehicles (AUVs) on the horizontal plane. Adaptive sliding mode control is employed in order to achieve a robust behavior against some uncertainty and ocean current disturbances, assuming that disturbance and its derivative are bounded by unknown boundary levels. The proposed approach is based on a dual layer adaptive...

متن کامل

Design and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter

This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...

متن کامل

Comparison of Guidance Modes for the AUV "Slocum Glider" in Time-Varying Ocean Flows

This paper presents possibilities for the reliable guidance of an AUV “Slocum Glider” in time-varying ocean flows. The presented guidance modes consider the restricted information during a real mission about the actual position and ocean current conditions as well as the available control modes of a glider. A faster-than-real-time, full software stack simulator for the Slocum glider will be des...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013